08 Groundwater Modeling

08-11 Data-Driven & Machine Learning Approaches

Machine Learning-based prediction, data assimilation, hybrid models.

Contents

08-11-001REST request to Retrieve real-time Hydrogeological Data, an example

Type: Jupyter Notebook Time: 15–30 minutes
REST request to Retrieve real-time Hydrogeological Data, an example

Figure 1: Data retrieved from the Sentilo sensor via API for a selected aquifer in Catalonia. (Screenshot)

This Jupyter Notebook serves as an example of how to retrieve hydrogeological data in real-time using REST requests. It is a useful tool for accessing open data from the aquifer of interest, such as piezometric levels, temperature, and electrical conductivity.

For this purpose, we illustrate how to retrieve hydrogeological data for the aquifers of Catalonia, sourced from the data generated by the Catalan Water Agency and stored in the open sensor platform Sentilo.

LAUNCH RESOURCE

Detail Value
URL github.com · open repository
Author(s) Oriol Bertran (UPC)
Keywords API, request, hydrogeological data
Fit For self learning, online teaching, classroom teaching
Prerequisites None specified.
References https://aca.gencat.cat/ca/laigua/consulta-de-dades/dades-obertes/dades-obertes-temps-real/index.html#googtrans(ca%7Cen
https://aca.gencat.cat/web/.content/20_Aigua/08_consulta_de_dades/01_dades_obertes/02_dades_obertes_temps_real/us_serveis_dades_API_REST.pdf
https://www.sentilo.io/
https://aca.gencat.cat/ca/inici/index.html#googtrans(ca%7Cen